Area of the quadrilateral formed with the foci of the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ and $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} =  - 1$ is

  • A

    $4(a^2 + b^2)$

  • B

    $2(a^2 + b^2)$

  • C

    $(a^2 + b^2)$

  • D

    $\frac{1}{2}$$(a^2 + b^2)$

Similar Questions

The equation of the common tangent to the curves $y^2 = 8x$ and $xy = -1$ is

The combined equation of the asymptotes of the hyperbola $2{x^2} + 5xy + 2{y^2} + 4x + 5y = 0$

Let the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{7}=1$ and the hyperbola $\frac{ x ^{2}}{144}-\frac{ y ^{2}}{\alpha}=\frac{1}{25}$ coincide. Then the length of the latus rectum of the hyperbola is:-

  • [JEE MAIN 2022]

If $P$ is a point on the hyperbola $16{x^2} - 9{y^2} = 144$ whose foci are ${S_1}$ and ${S_2}$, then $P{S_1}- P{S_2} = $

The latus-rectum of the hyperbola $16{x^2} - 9{y^2} = $ $144$, is